Mitochondrial proton conductance and H+/O ratio are independent of electron transport rate in isolated hepatocytes.

نویسندگان

  • R K Porter
  • M D Brand
چکیده

In this paper we examine the non-linearity of the relationship between the proton electrochemical gradient across the mitochondrial inner membrane (delta p) and oxygen consumption of non-phosphorylating mitochondria in situ in hepatocytes. Models proposing to explain the non-linear relationship were tested experimentally. It was shown that the mitochondrial proton conductance and the number of protons pumped to the cytosolic side of the mitochondrial inner membrane by the electron transport complexes per oxygen atom consumed (H+/O ratio) are independent of electron transport rate in mitochondria in isolated hepatocytes. The non-linearity of the plot of delta p against the non-phosphorylating oxygen consumption is due to either a potential-dependent slippage of the proton pumps of the mitochondrial inner membrane and/or a potential-dependent leakage of protons back across the mitochondrial inner membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

The effect of metabolic depression on proton leak rate in mitochondria from hibernating frogs.

Futile cycling of protons across the mitochondrial inner membrane accounts for 20 % or more of the total standard metabolic rate of a rat. Approximately 15 % of this total is due to proton leakage inside the skeletal muscle alone. This study examined whether the rate of proton leak is down-regulated as a part of a coordinated response to energy conservation during metabolic depression in cold-s...

متن کامل

Lysosomal Oxidative Stress Cytotoxicity Induced By Para-phenylenediamine Redox Cycling In Hepatocytes

It has already been reported that muscle necrosis induced by various phenylenediamine derivatives are correlated with their autoxidation rate. Now in a more detailed investigation of the cytotoxic mechanism using a model system of isolated hepatocytes and ring-methylated structural isomer durenediamine (DD) we have shown that under aerobic conditions, phenylenediamine induced cytotoxicity and R...

متن کامل

The relative proton stoichiometries of the mitochondrial proton pumps are independent of the proton motive force.

Several different proton pumps were used to generate a proton motive force (delta p, proton motive force across the mitochondrial inner membrane) in isolated rat liver mitochondria, and the relationship between delta p and pump rate was investigated by titrating with various inhibitors of the pumps. It was found that this relationship was the same for mitochondria respiring on succinate irrespe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 310 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1995